Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence
نویسندگان
چکیده
Ratiometric laser induced fluorescence (LIF) thermometry is developed as a tool for temperature measurements using microscale visualization methods. Rhodamine B (RhB) and Rhodamine 110 (Rh110) are used as the temperature-dependent and temperature-independent dyes, respectively. The temperature responses of the two dyes are carefully measured as a function of concentration. The traditional twodye LIF technique is compared to the single-dye LIF technique for microfluidic temperature measurement. The capabilities of these methods are demonstrated by visualizing the mixing plane between a hot and a cold fluid stream near a ‘T’ junction. The method is then applied to study the non-uniform temperature profiles generated due to flow maldistribution in a silicon microchannel heat sink. The experimental results illustrate the importance of proper design of inlet and outlet manifolds to maximize the performance of a microchannel heat sink. The technique is demonstrated to have a maximum uncertainty of ±1.25 C for single-pixel measurements and a minimum uncertainty of ±0.6 C for measurements averaged over a large area in a temperature range of 20–50 C. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Experimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کاملNumerical investigating the gas slip flow in the microchannel heat sink using different materials
In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...
متن کاملStudy on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink
The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale. Results were compared with both analytical and experimental data and observed good concordance with previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficie...
متن کامل